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Recursive graphical construction of Feynman diagrams and their multiplicities
in f4 and f2A theory
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The free energy of a field theory can be considered as a functional of the free correlation function. As such
it obeys a nonlinear functional differential equation that can be turned into a recursion relation. This is solved
order by order in the coupling constant to find all connected vacuum diagrams with their proper multiplicities.
The procedure is applied to a multicomponent scalar field theory with af4 self-interaction and then to a theory
of two scalar fieldsf andA with an interactionf2A. All Feynman diagrams with external lines are obtained
from functional derivatives of the connected vacuum diagrams with respect to the free correlation function.
Finally, the recursive graphical construction is automatized by computer algebra with the help of a unique
matrix notation for the Feynman diagrams.

PACS number~s!: 05.70.Fh, 64.60.2i
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I. INTRODUCTION

If one wants to draw all Feynman diagrams of high
orders by hand, it becomes increasingly difficult to ident
all topologically different connections between the vertic
To count the corresponding multiplicities is an even mo
tedious task. Fortunately, there exist now various conven
computer programs, for instance,FEYNARTS @1–3# or QGRAF

@4,5#, for constructing and counting Feynman diagrams
different field theories.

The purpose of this paper is to develop an alterna
systematic approach to construct all Feynman diagrams
field theory. It relies on considering a Feynman diagram a
functional of its graphical elements, i.e., its lines and ve
ces. Functional derivatives with respect to these elements
represented by graphical operations that remove lines or
tices of a Feynman diagram in all possible ways. With th
operations, our approach proceeds in two steps. First the
nected vacuum diagrams are constructed, together with
proper multiplicities, as solutions of a graphical recursi
relation derived from a nonlinear functional differenti
equation. This relation was set up a long time ago@6,7#, but
so far it has only been solved to all orders in the coupl
strength in the trivial case of zero-dimensional quantum fi
theories. The present paper extends the previous work
developing an efficient graphical algorithm for solving th
equation for two simple scalar field theories, a multicomp
nent scalar field theory withf4 self-interaction, and a theor
with two scalar fieldsf andA with the interactionf2A. In a
second step, all connected diagrams with external lines
obtained from functional derivatives of the connect
vacuum diagrams with respect to the free correlation fu
tion. Finally, we demonstrate how to automatize our co
struction method by computer algebra with the help o
unique matrix notation for Feynman diagrams.

II. SCALAR f4 THEORY

Consider a self-interacting scalar fieldf with N compo-
nents ind Euclidean dimensions whose thermal fluctuatio
are controlled by the energy functional
PRE 621063-651X/2000/62~2!/1537~23!/$15.00
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E@f#5
1

2 E12
G12

21f1f21
g

4! E1234
V1234f1f2f3f4

~2.1!

with some coupling constantg. In this short-hand notation
the spatial and tensorial arguments of the fieldf, the bilocal
kernel G21, and the quartic interactionV are indicated by
simple number indices, i.e.,

1[$x1 ,a1%, E
1
[(

a1

E ddx1 ,

f1[fa1
~x1!, G12

21[Ga1 ,a2

21 ~x1 ,x2!,

V1234[Va1 ,a2 ,a3 ,a4
~x1 ,x2 ,x3 ,x4!. ~2.2!

The kernel is a functional matrixG21, while V is a func-
tional tensor, both being symmetric in their indices. The e
ergy functional~2.1! describes genericallyd-dimensional Eu-
clidean f4 theories. These are models for a family
universality classes of continuous phase transitions, suc
the O(N)-symmetricf4 theory, which serves to derive th
critical phenomena in dilute polymer solutions (N50),
Ising- and Heisenberg-like magnets (N51,3), and superflu-
ids (N52). In all these cases, the energy functional~2.1! is
specified by

Ga1 ,a2

21 ~x1 ,x2!5da1 ,a2
~2]x1

2 1m2!d~x12x2!, ~2.3!

Va1 ,a2 ,a3 ,a4
~x1 ,x2 ,x3 ,x4!

5
1

3
$da1 ,a2

da3 ,a4
1da1 ,a3

da2 ,a4
1da1 ,a4

da2 ,a3
%

3d~x12x2!d~x12x3!d~x12x4!, ~2.4!

where the massm2 is proportional to the temperature dis
tance from the critical point. In the following we shall leav
G21 and V completely general, except for the symmet
with respect to their indices, and insert the physical valu
1537 ©2000 The American Physical Society
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1538 PRE 62KLEINERT, PELSTER, KASTENING, AND BACHMANN
~2.3! and~2.4! at the end. By using natural units in which th
Boltzmann constantkB times the temperatureT equals unity,
the partition function is determined as a functional integ
over the Boltzmann weighte2E@f#

Z5E Df e2E@f# ~2.5!

and may be evaluated perturbatively as a power series in
coupling constantg. From this we obtain the negative fre
energyW5 ln Z as an expansion

W5 (
p50

`
1

p! S 2g

4! D p

W~p!. ~2.6!

The coefficients W(p) may be displayed as connecte
vacuum diagrams constructed from lines and vertices. E
line represents a free correlation function

~2.7!

which is the functional inverse of the kernelG21 in the
energy functional~2.1!, defined by

E
2
G12G23

215d13. ~2.8!

The vertices represent an integral over the interaction

~2.9!

To construct all connected vacuum diagrams contributing
W(p) to each orderp in perturbation theory, one connectsp
vertices with 4p legs in all possible ways according to Fe
nman’s rules, which follow from Wick’s expansion of corre
lation functions into a sum of all pair contractions. Th
yields an increasing number of Feynman diagrams, each
a certain multiplicity that follows from combinatorics. In to
tal there are 4!pp! ways of ordering the 4p legs of thep
vertices. This number is reduced by permutations of the l
and the vertices that leave a vacuum diagram invariant.
noting the number of self-, double, triple, and fourfold co
nections withS, D, T, F, there are 2!S, 2!D, 3!T, 4!F leg
permutations. An additional reduction arises from the nu
ber N of vertex permutations, leaving the vacuum diagra
unchanged, where the vertices remain attached to the
emerging from them in the same way as before. The res
ing multiplicity of a connected vacuum diagram in thef4

theory is therefore given by the formula@9,10#

Mf4
E50

5
4!pp!

2!S1D3!T4!FN
. ~2.10!

The superscriptE50 records that the number of extern
legs of the connected vacuum diagram is zero. The diagr
matic representation of the coefficientsW(p) in the expansion
~2.6! of the negative free energyW is displayed in Table I up
to five loops@12–14#.

For higher orders, the factorially increasing number
diagrams makes it more and more difficult to construct
topologically different diagrams and to count their mul
l
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plicities. In particular, it becomes quite hard to identify b
inspection the numberN of vertex permutations. This iden
tification problem is solved by introducing a uniqued mat
notation for the diagrams, to be explained in detail in S
IV.

In the following, we shall generate iteratively all con
nected vacuum diagrams. We start in Sec. II A by identifyi
graphical operations associated with functional derivati
with respect to the kernelG21, or the free correlation func-
tion G. In Sec. II B we show that these operations can
applied to the one-loop contribution of the free partitio
function to generate all perturbative contributions to the p
tition function ~2.5!. In Sec. II C we derive a nonlinear func
tional differential equation for the negative free energyW,
whose graphical solution in Sec. II D yields all connect
vacuum diagrams order by order in the coupling strength

A. Basic graphical operations

Each Feynman diagram is composed of integrals o
products of free correlation functionsG and may thus be
considered as a functional of the kernelG21. The connected
vacuum diagrams satisfy a certain functional different
equation, from which they will be constructed recursive
This will be done by a graphical procedure, for which we s
up the necessary graphical rules in this subsection. First
observe that functional derivatives with respect to the ker
G21 or to the free correlation functionG correspond to the
graphical prescriptions of cutting or of removing a single li
of a diagram in all possible ways, respectively.

1. Cutting lines

Sincef is a real scalar field, the kernelG21 is a symmet-
ric functional matrix. This property has to be taken into a
count when performing functional derivatives with respect
the kernelG21, whose basic rule is

dG12
21

dG34
21 5

1

2
$d13d421d14d32%. ~2.11!

From the identity~2.8! and the functional chain rule, we fin
the effect of this derivative on the free correlation functio

22
dG12

dG34
21 5G13G421G14G32. ~2.12!

This has the graphical representation

22
d

dG34
21 1 251 3 4 211 4 3 2.

~2.13!

Thus differentiating a free correlation function with respe
to the kernelG21 amounts to cutting the associated line in
two pieces. The differentiation rule~2.11! ensures that the
spatial indices of the kernel are symmetrically attached to
newly created line ends in the two possible ways. Wh
differentiating a general Feynman integral with respect
G21, the product rule of functional differentiation leads to
sum of diagrams in which each line is cut once.
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TABLE I. Connected vacuum diagrams and their multiplicities of thef4 theory up to five loops. Each diagram is characterized by
vector~S,D,T,F;N! whose components specify the number of self-, double, triple, and fourfold connections, and of the vertex perm
leaving the vacuum diagram unchanged, respectively.
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With this graphical operation, the product of two field
can be rewritten as a derivative of the energy functional w
respect to the kernel

f1f252
dE@f#

dG12
21 , ~2.14!

as follows directly from~2.1! and ~2.11!. Applying the sub-
stitution rule ~2.14! to the functional integral for the fully
interacting two-point function

G125
1

Z E Df f1f2e2E@f#, ~2.15!

we obtain the fundamental identity

G12522
dW

dG12
21 . ~2.16!

Thus, by cutting a line of the connected vacuum diagram
all possible ways, we obtain all diagrams of the fully inte
acting two-point function. Analytically this has a Taylor s
ries expansion in powers of the coupling constantg similar
to ~2.6!

G125 (
p50

`
1

p! S 2g

4! D p

G12
~p! ~2.17!

with coefficients
h

in

G12
~p!522

dW~p!

dG12
21 . ~2.18!

The cutting prescription~2.18! converts the vacuum dia
grams ofpth order in the coefficientsW(p) in Table I to the
corresponding ones in the coefficientsG12

(p) of the two-point
function. The results are shown in Table II up to four loop
The numbering of diagrams used in Table II reveals fro
which connected vacuum diagrams they are obtained by
ting a line. For instance, the diagrams 15.1–15.5 and t
multiplicities in Table II follow from the connected vacuum
diagram 15 in Table I. We observe that the multiplicity of
diagram of a two-point function obeys a formula similar
~2.10!:

Mf4
E52

5
4!pp!2!

2!S1D3!TN
. ~2.19!

In the numerator, the 4!pp! permutations of the 4p legs of
the p vertices are multiplied by a factor 2! for the permut
tions of theE52 end points of the two-point function. Th
numberN in the denominator counts the combined permu
tions of thep vertices and the two end points that leave t
diagram unchanged.

Performing a differentiation of the two-point functio
~2.15! with respect to the kernelG21 yields
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TABLE II. Connected diagrams of the two-point function and their multiplicities of thef4 theory up to four loops. Each diagram
characterized by the vector~S,D,T;N! whose components specify the number of self-, double, triple connections, and of the com
permutations of vertices and external lines leaving the diagram unchanged, respectively.
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22
dG12

dG34
21 5G12342G12G34, ~2.20!

whereG1234 denotes the fully interacting four-point functio

G12345
1

Z E Df f1f2f3f4e2E@f#. ~2.21!

The termG12G34 in ~2.20! subtracts a certain set of disco
nected diagrams fromG1234. By subtracting all disconnecte
diagrams fromG1234, we obtain the connected four-poin
function

G1234
c [G12342G12G342G13G242G14G23 ~2.22!

in the form

G1234
c 522

dG12

dG34
21 2G13G242G14G23. ~2.23!

The first term contains all diagrams obtained by cutting
line in the diagrams of the two-point functionG12. The sec-
ond and third terms remove from these the disconnected
grams. In this way we obtain the perturbative expansion
n
e

o
un

a-

nd
a

ia-

G1234
c 5 (

p51

`
1

p! S 2g

4! D p

G1234
c,~p! ~2.24!

with coefficients

G1234
c,~p!522

dG12
~p!

dG34
21 2 (

q50

p S p
qD ~G13

~p2q!G24
~q!1G14

~p2q!G23
~q!!.

~2.25!

They are listed diagrammatically in Table III up to thre
loops. As before in Table II, the multiple numbering in Tab
III indicates the origin of each diagram of the connect
four-point function. For instance, the diagram 11.2.2, 11.4
14.1.2, 14.3.3 in Table III stems together with its multiplici
from the diagrams 11.2, 11.4, 14.1, 14.3 in Table II.

The multiplicity of each diagram of a connected fou
point function obeys a formula similar to~2.19!:

Mf4
E54

5
4!pp!4!

2!S1D3!TN
. ~2.26!

This multiplicity decomposes into equal parts if the spat
indices 1, 2, 3, 4 are assigned to theE54 end points of the
connected four-point function, for instance:
~2.27!
n
the
es

e

of
s
ein-
Generalizing the multiplicities~2.10!, ~2.19!, and ~2.26! for
connected vacuum diagrams, two- and four-point functio
to an arbitrary connected correlation function with an ev
numberE of end points, we see that

Mf4
E

5
4!pp!E!

2!S1D3!T4!FN
, ~2.28!

where N counts the number of combined permutations
vertices and external lines which leave the diagram
changed.

2. Removing lines

We now study the graphical effect of functional deriv
tives with respect to the free correlation functionG, where
the basic differentiation rule~2.11! becomes

dG12

dG34
5

1

2
$d13d421d14d32%. ~2.29!

We represent this graphically by extending the elements
Feynman diagrams by an open dot with two labeled line e
representing the delta function:

1–+–25d12 ~2.30!
s
n

f
-

of
s

Thus we can write the differentiation~2.29! graphically as
follows:

d

d3 4
1 25

1

2
$1–+–3 4–+–211–+–4 3–+–2%. ~2.31!

Differentiating a line with respect to the free correlatio
function removes the line, leaving in a symmetrized way
spatial indices of the free correlation function on the vertic
to which the line was connected.

The effect of this derivative is illustrated by studying th
diagrammatic effect of the operator

L̂5E
12

G12

d

dG12
. ~2.32!

Applying L̂ to a connected vacuum diagram inW(p), the
functional derivatived/dG12 generates diagrams in each
which one of the 2p lines of the original vacuum diagram i
removed. Subsequently, the removed lines are again r
serted, so that the connected vacuum diagramsW(p) are
eigenfunctions ofL̂, whose eigenvalues 2p count the lines of
the diagrams:

L̂W~p!52pW~p!. ~2.33!
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TABLE III. Connected diagrams of the four-point function and their multiplicities of thef4 theory up to three loops. Each diagram
characterized by the vector~S, D, T; N! whose components specify the number of self-, double, triple connections, and of the com
permutations of vertices and external lines leaving the diagram unchanged, respectively.
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TABLE III. ~Continued!.
th

-

de-

-

As an example, take the explicit first-order expression for
vacuum diagrams, i.e.

W~1!53E
1234

V1234G12G34, ~2.34!

and apply the basic rule~2.29!, leading to the desired eigen
value 2.
e B. Perturbation theory

Field theoretic perturbation expressions are usually
rived by introducing an external currentJ into the energy
functional~2.1! which is linearly coupled to the fieldf @15–
17#. Thus the partition function~2.5! becomes in the pres
ence ofJ the generating functionalZ@J#, which allows us to
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find all free n-point functions from functional derivative
with respect to this external currentJ. In the normal phase o
a f4 theory, the expectation value of the fieldf is zero and
only correlation functions of an even number of fields a
nonzero. To calculate all of these, it is possible to substi
two functional derivatives with respect to the currentJ by
one functional derivative with respect to the kernelG21.
This reduces the number of functional derivatives in ea
order of perturbation theory by one-half and has the ad
tional advantage that the introduction of the currentJ be-
comes superfluous.

1. Current approach

Recall briefly the standard perturbative treatment,
which the energy functional~2.1! is artificially extended by a
source term

E@f,J#5E@f#2E
1
J1f1 . ~2.35!

The functional integral for the generating functional

Z@J#5E Df e2E@f,J# ~2.36!

is first explicitly calculated for a vanishing coupling consta
g, yielding

Z~0!@J#5expH 2
1

2
Tr ln G211

1

2 E12
G12 J1J2J ,

~2.37!

where the trace of the logarithm of the kernel is defined
the series~see p. 16 in Ref.@18#!

Tr ln G215 (
n51

`
~21!n11

n E
1...n

$G12
212d12%¯$Gn1

212dn1%.

~2.38!

If the coupling constantg does not vanish, one expands t
generating functionalZ@J# in powers of the quartic interac
tion V, and reexpresses the resulting powers of the fi
within the functional integral~2.36! as functional derivatives
with respect to the currentJ. The original partition function
~2.5! can thus be obtained from the free generating fu
tional ~2.37! by the formula

Z5expH 2
g

4! E1234
V1234

d4

dJ1dJ2dJ3dJ4
J Z~0!@J#U

J50

.

~2.39!

Expanding the exponential in a power series, we arrive at
perturbation expansion

Z5H 11
2g

4! E
1234

V1234

d4

dJ1dJ2dJ3dJ4

1
1

2 S 2g

4! D 2E
12345678

V1234V5678

3
d8

dJ1dJ2dJ3dJ4dJ5dJ6dJ7dJ8
1...J Z~0!@J#U

J50

,

~2.40!
te

h
i-

n

t

y

ld

-

e

in which thepth order contribution for the partition function
requires the evaluation of 4p functional derivatives with re-
spect to the currentJ.

2. Kernel approach

The derivation of the perturbation expansion simplifies
we use functional derivatives with respect to the kernelG21

in the energy functional~2.1! rather than with respect to th
currentJ. This allows us to substitute the previous expre
sion ~2.39! for the partition function by

Z5expH 2
g

6 E1234
V1234

d2

dG12
21dG34

21J eW~0!
, ~2.41!

where the zeroth order of the negative free energy has
diagrammatic representation

~2.42!

Expanding again the exponential in a power series, we ob

Z5H 11
2g

6 E
1234

V1234

d2

dG12
21dG34

21

1
1

2 S 2g

6 D 2E
12345678

V1234V5678

3
d4

dG12
21dG34

21dG56
21dG78

21 1...J eW~0!
. ~2.43!

Thus we need only half as many functional derivatives th
in ~2.40!. Taking into account~2.11!, ~2.12!, and~2.38!, we
obtain

dW~0!

dG12
21 52

1

2
G12,

d2W~0!

dG12
21dG34

21 5
1

4
$G13G241G14G23%,

~2.44!

such that the partition functionZ becomes

Z5H 11
2g

4!
3E

1234
V1234G12G341

1

2 S 2g

4! D 2

3E
12345678

V1234V5678 @9G12G34G56G78

124G15G26G37G48172G12G35G46G78#1...J eW~0!
.

~2.45!

This has the diagrammatic representation
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~2.46!

All diagrams in this expansion follow directly by successively cutting lines of the basic one-loop vacuum diagram~2.42!
according to~2.43!. By going to the logarithm of the partition functionZ, we find a diagrammatic expansion for the negat
free energyW

~2.47!
m
e

fre
c

r

-
c-

nd

or
which turns out to contain precisely all connected diagra
in ~2.46! with the same multiplicities. In the next section w
show that this diagrammatic expansion for the negative
energy can be derived more efficiently by solving a fun
tional differential equation.

C. Functional differential equation for WÄ ln Z

Regarding the partition functionZ as a functional of the
kernelG21, we derive a functional differential equation fo
Z. We start with the trivial identity

E Df
d

df1
$f2e2E@f#%50, ~2.48!

which follows via direct functional integration from the van
ishing of the exponential at infinite fields. Taking into a
count the explicit form of the energy functional~2.1!, we
perform the functional derivative with respect to the field a
obtain

E DfH d122E
3
G13

21f2f3

2
g

6 E345
V1345f2f3f4f5J e2E@f#50. ~2.49!

Applying the substitution rule~2.14!, this equation can be
expressed in terms of the partition function~2.5! and its de-
rivatives with respect to the kernelG21:

d12Z12E
3
G13

21 dZ

dG23
21 5

2

3
gE

345
V1345

d2Z

dG23
21dG45

21 .

~2.50!

Note that this linear functional differential equation f
the partition functionZ is, indeed, solved by~2.41! due to the
commutation relation
s

e
-

expH 2
g

6 E1234
V1234

d2

dG12
21dG34

21J G56
212G56

21

3expH 2
g

6 E1234
V1234

d2

dG12
21dG34

21J
52

g

3 E78
V5678

d

dG78
21

3expH 2
g

6 E1234
V1234

d2

dG12
21dG34

21J , ~2.51!

which follows from the canonical one

d

dG12
21 G34

212G34
21 d

dG12
21 5

1

2
$d13d241d14d23%.

~2.52!

Going over fromZ to W5 ln Z, the linear functional differ-
ential equation~2.50! turns into a nonlinear one:

d1212E
3
G13

21 dW

dG23
21

5
2

3
gE

345
V1345H d2W

dG23
21dG45

21 1
dW

dG23
21

dW

dG45
21J . ~2.53!

If the coupling constantg vanishes, this is immediately
solved by~2.42!. For a non-vanishing coupling constantg,
the right-hand side in~2.53! produces corrections to~2.42!
which we shall denote withW(int). Thus the negative free
energyW decomposes according to

W5W~0!1W~ int!. ~2.54!
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Inserting this into~2.53! and taking into account~2.44!, we
obtain the following functional differential equation for th
interaction negative free energyW(int):

E
12

G12
21 dW~ int!

dG12
21

5
g

4 E1234
V1234G12G342

g

3 E1234
V1234G12

dW~ int!

dG34
21

1
g

3 E1234
V1234H d2W~ int!

dG12
21dG34

21 1
dW~ int!

dG12
21

dW~ int!

dG34
21 J .

~2.55!

With the help of the functional chain rule, the first and se
ond derivatives with respect to the kernelG21 are rewritten
as

d

dG12
21 52E

34
G13G24

d

dG34
~2.56!

and

d2

dG12
21dG34

21 5E
5678

G15G26G37G48

d2

dG56dG78

1
1

2 E56
$G13G25G461G14G25G36

1G23G15G461G24G15G36%
d

dG56
,

~2.57!

respectively, so that the functional differential equati
~2.55! for W(int) takes the form~compare Eq.~51! in Ref. @7#!
-

E
12

G12

dW~ int!

dG12
52

g

4 E1234
V1234G12G34

2gE
123456

V1234G12G35G46

dW~ int!

dG56

2
g

3 E12345678
V1234G15G26G37G48

3H d2W~ int!

dG56dG78
1

dW~ int!

dG56

dW~ int!

dG78
J .

~2.58!

D. Recursion relation and graphical solution

We now convert the functional differential equatio
~2.58! into a recursion relation by expandingW(int) into a
power series ing:

W~ int!5 (
p51

`
1

p! S 2g

4! D p

W~p!. ~2.59!

Using the property~2.33! that the coefficientW(p) satisfies
the eigenvalue problem of the line numbering opera
~2.32!, we obtain the recursion relation

W~p11!512E
123456

V1234G12G35G46

dW~p!

dG56

14E
12345678

V1234G15G26G37G48

d2W~p!

dG56dG78

14(
q51

p21 S p
qD E

12345678
V1234G15G26G37G48

3
dW~p2q!

dG56

dW~q!

dG78
~2.60!

and the initial condition~2.34!. With the help of the graphi-
cal rules of Sec. II A, the recursion relation~2.60! can be
written diagrammatically as follows:
o-line
utations
~2.61!

This is iterated starting from

~2.62!

The right-hand side of~2.61! contains three different graphical operations. The first two are linear and involve one- or tw
amputations of the previous perturbative order. The third operation is nonlinear and mixes two different one-line amp
of lower orders.
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An alternative way of formulating the above recursion relation may be based on the graphical rules

~2.63!

With these, the recursion relation~2.61! reads

~2.64!

To demonstrate the working of~2.61!, we calculate the connected vacuum diagrams up to five loops. Applying the l
operations to~2.60!, we obtain immediately

~2.65!

Inserted into~2.61!, these lead to the three-loop vacuum diagrams

~2.66!

Proceeding to the next order, we have to perform one- and two-line amputations on the vacuum diagrams in~2.66!, leading to

~2.67!

and subsequently to

~2.68!
or
e
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e

Inserting ~2.67! and ~2.68! into ~2.61! and taking into ac-
count~2.65!, we find the connected vacuum diagrams of
der p53 with their multiplicities as shown in Table I. W
observe that the nonlinear operation in~2.61! does not lead
to topologically new diagrams. It only corrects the mul
plicities of the diagrams generated from the first two ope
tions. This is true also in higher orders. The connec
vacuum diagrams of the subsequent orderp54 and their
multiplicities are listed in Table I.

As a crosscheck we can also determine the total mu
plicities M (p) of all connected vacuum diagrams contributi
to W(p). To this end we recall that each of theM (p) diagrams
in W(p) consists of 2p lines. The amputation of one or tw
lines therefore leads to 2pM(p) and 2p(2p21)M (p) dia-
grams with 2p21 and 2p22 lines, respectively. Consider
ing only the total multiplicities, the graphical recursion rel
tions ~2.61! reduce to the form derived before in Ref.@7#
-

-
d

i-

M ~p11!516p~p11!M ~p!

116(
q51

p21
p!

~p2q21!! ~q21!!
M ~q!M ~p2q!; p>1.

~2.69!

These are solved starting with the initial value

M ~1!53, ~2.70!

leading to the total multiplicities

M ~2!596, M ~3!59504, M ~4!51880064, ~2.71!

which agree with the results listed in Table I. In addition w
note that the next orders would contain

M ~5!5616108032,M ~6!5301093355520,
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M ~7!5205062331760640 ~2.72!

connected vacuum diagrams.

III. SCALAR f2A THEORY

For the sake of generality, let us also study the situat
where the quartic interaction of thef4 theory is generated by
a scalar fieldA from a cubicf2 A interaction. The associate
energy functional

E@f,A#5E~0!@f,A#1E~ int!@f,A# ~3.1!

decomposes into the free part

E~0!@f,A#5
1

2 E12
G12

21f1f21
1

2 E12
H12

21A1A2 ~3.2!

and the interaction

E~ int!@f,A#5
Ag

2 E
123

V123f1f2A3 . ~3.3!

Indeed, as the fieldA appears only quadratically in~3.1!, the
functional integral for the partition function

Z5E DfDAe2E@f,A# ~3.4!

can be exactly evaluated with respect to the fieldA, yielding

Z5E Df e2E~eff!@f# ~3.5!

with the effective energy functional

E~eff!@f#52
1

2
Tr ln H211

1

2 E12
G12

21f1f2

2
g

8 E123456
V125V346H56f1f2f3f4 . ~3.6!

Apart from a trivial shift due to the negative free energy
the field A, the effective energy functional~3.6! coincides
with that of af4 theory in Eq.~2.1! with the quartic inter-
action

V1234523E
56

V125V346H56. ~3.7!
n

f

If we supplement the previous Feynman rules~2.7!, ~2.9! by
the free correlation function of the fieldA

~3.8!

and the cubic interaction

~3.9!

the intimate relation~3.7! between thef4-theory and the
f2A- theory can be graphically illustrated by

~3.10!

This corresponds to a photon exchange in the so-calleds, t,
andu channels of Mandelstam’s theory of the scattering m
trix. Their infinite repetitions yield the relevant forces in th
Hartree, Fock, and Bogoliubov approximations of man
body physics. In the following we analyze thef2A theory
along similar lines as before thef4 theory.

A. Perturbation theory

Expanding the exponential in the partition function~3.4!
in powers of the coupling constantg, the resulting perturba-
tion series reads

Z5 (
p50

`
1

~2p!! S g

4D p

3E DfDAS E
123456

V123V456f1f2f4f5A3A6D p

3e2E~0!@f,A#. ~3.11!

Substituting the product of two fieldsf or A by a functional
derivative with respect to the kernelsG21 or H21, we con-
clude from~3.11!

Z5 (
p50

`
~22g!p

~2p!! S E
123456

V123V456

d3

dG12
21dG45

21dH36
21D p

3eW~0!
, ~3.12!

where the zeroth order of the negative free energy reads
~3.13!
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Inserting ~3.13! in ~3.12!, the first-order contribution to the
negative free energy yields

W~1!52E
123456

V123V456H36G14G25

1E
123456

V123V456H36G12G45, ~3.14!

which corresponds to the Feynman diagrams

~3.15!

B. Functional differential equation for WÄ ln Z

The derivation of a functional differential equation for th
negative free energyW requires the combination of two in
dependent steps. Consider first the identity

E DfDA
d

df1
$f2e2E@f,A#%50, ~3.16!

which immediately yields with the energy functional~3.1!

d12Z12E
3
G13

21 dZ

dG23
21 12AgE

34
V134

d $^A4&Z%

dG23
21 50,

~3.17!

where ^A& denotes the expectation value of the fieldA. In
order to close the functional differential equation, we co
sider the second identity

E DfDA
d

dA1
e2E@f,A#50, ~3.18!

which leads to

^A1&Z5AgE
234

V234H14

dZ

dG23
21 . ~3.19!

Inserting~3.19! in ~3.17!, we result in the desired functiona
differential equation for the negative free energyW5 ln Z:

d1212E
2
G13

21 dW

dG23
21 522gE

34567
V134V567

3H47H d2W

dG23
21dG56

21 1
dW

dG23
21

dW

dG56
21J .

~3.20!

A subsequent separation~2.54! of the zeroth-order~3.13!
leads to a functional differential equation for the interacti
part of the free energyW(int):
-

E
12

G12
21 dW~ int!

dG12
21 52

g

4 E123456
V123V456H36

3$G12G4512G14G25%

1gE
123456

V123V456G12H36

dW~ int!

dG45
21

2gE
123456

V123V456H36H d2W~ int!

dG12
21dG45

21

1
dW~ int!

dG12
21

dW~ int!

dG45
21 J . ~3.21!

Taking into account the functional chain rules~2.56!, ~2.57!,
the functional derivatives with respect toG21 in ~3.21! can
be rewritten in terms ofG:

E
12

G12

dW~ int!

dG12
5

g

4 E123456
V123V456H36$G12G4512G14G25%

1gE
123456

V123V456H36$G12G47G58

12G14G27G58%
dW~ int!

dG78

1gE
1234567891̄

V123V456

3H36G17G28G39G41̄

3H d2W~ int!

dG78dG91̄
1

dW~ int!

dG78

dW~ int!

dG91̄
J . ~3.22!

C. Recursion relation and graphical solution

The functional differential equation~3.22! is now solved
by the power series

W~ int!5 (
p51

`
1

~2p!! S g

4D p

W~p!. ~3.23!

Using the property~2.33! that the coefficientsW(p) satisfy
the eigenvalue condition of the operator~2.32!, we obtain
both the recursion relation

W~p11!54~2p11!H E
12345678

V123V456H36~G12G47G58

12G14G27G58!
dW~p!

dG78
1E

1234567891̄
V123V456

3H36G17G28G39G41̄

3F d2W~p!

dG78dG91̄
1 (

q51

p21 S 2p
2qD dW~p2q!

dG78

dW~q!

dG91̄
G J
~3.24!

and the initial value~3.14!. Using the Feynman rules~2.7!,
~3.8!, and ~3.9!, the recursion relation~3.24! reads graphi-
cally
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~3.25!

which is iterated starting from~3.15!. In analogy to~2.64!, this recursion relation can be cast in a closed diagrammatic wa
using the alternative graphical rules~2.63!:

~3.26!

We illustrate the procedure of solving the recursion relation~3.25! by constructing the three-loop vacuum diagrams. Apply
one or two functional derivatives to~3.15!, we have

~3.27!
s
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This is inserted into~3.25! to yield the three-loop diagram
shown in Table IV with their multiplicities. The table als
contains the subsequent four-loop results, which we shall
derive here in detail. Observe that the multiplicity of a co
nected vacuum diagram in thef2A theory is given by a
formula similar to~2.10! in the f4 theory:

Mf2A
E50

5
~2p!!4p

2!S1DN
. ~3.28!

HereSandD denote the number of self- and double conn
tions, andN represents again the number of vertex permu
tions leaving the vacuum diagram unchanged.

The connected vacuum diagrams of thef2A theory in
Table IV can, of course, be converted to corresponding o
of the f4 theory in Table I, by shrinking wiggly lines to a
point and dividing the resulting multiplicity by 3 in acco
dance with~3.10!. This relation between connected vacuu
diagrams inf4 andf2A theory is emphasized by the num
bering used in Table IV. For instance, the shrinking conve
the five diagrams 4.1–4.5 in Table IV to the diagram 4
Table I. Taking into account the different combinatorial fa
tors in the expansion~2.6! and~3.23! as well as the factor 3
in the shrinkage~3.10!, the multiplicity Mf4

E50 of a f4 dia-
gram results from the corresponding oneMf2A

E50 of the f2A
partner diagrams via the rule

Mf4
E50

5
1

~2p21!!!
Mf2A

E50. ~3.29!
ot
-

-
-

es

s

-

IV. COMPUTER GENERATION OF DIAGRAMS

Continuing the solution of the graphical recursion re
tions ~2.61! and ~3.25! to higher loops becomes an arduo
task. We therefore automatize the procedure by comp
algebra. Here we restrict ourselves to thef4 theory because
of its relevance for critical phenomena.

A. Matrix representation of diagrams

To implement the procedure on a computer we must r
resent Feynman diagrams in thef4 theory by algebraic sym-
bols. For this we use matrices as defined in Refs.@8–10#. Let
p be the number of vertices of a given diagram and la
them by indices from 1 top. Set up an adjacency matrixM
whose elementsMi j ~0< i , j <p! specify the number of lines
joining the verticesi and j. The diagonal elementsMii ( i
.0) count the number of self-connections of thei th vertex.
External lines of a diagram are labeled as if they were c
nected to a single additional dummy vertex with number
The matrix elementM00 is set to zero by convention. Th
off-diagonal elements lie in the interval 0<Mi j <4, while
the diagonal elements fori .0 are restricted by 0<Mii <2.
We observe that the sum of the matrix elementsMi j in each
but the zeroth row or column equals 4, where the diago
elements count twice,

(
j 50

p

Mi j 1Mii 5(
j 50

p

M ji 1Mii 54. ~4.1!

The matrix M is symmetric and is thus specified b
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TABLE IV. Connected vacuum diagrams and their multiplicities of thef2A theory up to four loops. Each diagram is characterized
the vector~S, D; N! whose components specify the number of self- and double connections as well as the vertex permutations lea
vacuum diagram unchanged, respectively.
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(p11)(p12)/221 elements. Each matrix characterizes
unique diagram and determines its multiplicity via formu
~2.28!. From the matrixM we read off directly the number o
self-, double, triple, fourfold connectionsS, D, T, F and the
number of external legsE5S i 51

p M0i . It also permits us to
calculate the numberN. For this we observe that the matr
M is not unique, since so far the vertex numbering is ar
trary. In fact,N is the number of combined permutations
vertices and external lines that leave the matrixM un-
changed@compare to the statement after~2.28!#. If nM de-
notes the number of different matrices representing the s
diagram, the numberN is given by

N5
p!

nM
)
i 51

p

M0i !, ~4.2!

where the matrix elementsM0i count the number of externa
legs connected to thei th vertex. One way to determine th
number nM is to repeatedly perform thep(p21)/2 ex-
changes of pairs of rows and columns except the zeroth o
until no new matrix is generated anymore. For larger ma
ces this way of determiningnM is quite tedious. Below we
will give a better approach. Inserting Eq.~4.2! into the for-
mula ~2.28!, we obtain the multiplicity of the diagram repre
sented byM . This may be used to crosscheck the multipli
ties obtained before when solving the graphical recurs
relation ~2.61!.

So far, the vertex numbering has been arbitrary, mak
the matrix representation of a diagram nonunique.
achieve uniqueness, we customize to our problem the pr
dure introduced in@11#. First we group the vertices in
i-

e

es,
i-

n

g
o
e-

given diagram into different classes, which are defined
the four tuples~E, S, D, T! containing the number of externa
legs, self-, double, and triple connections of a vertex. T
classes are sorted by increasing numbers ofE, thenS, thenD,
thenT. In general, there can still be vertices that coincide
all four numbers and whose ordering is therefore still ar
trary. To achieve unique ordering among these vertices,
associate with each matrix a number whose digits are c
posed of the matrix elementsMi j (0< j < i<p), i.e., we form
the number with the (p11)(p12)/221 elements

M10M11uM20M21M22uM30M31M32M33u...M pp . ~4.3!

To guide the eye, we have separated the digits stemm
from different rows by vertical lines. The smallest of the
numbers compatible with the vertex ordering introduc
above is chosen to represent the diagram uniquely. Ins
we could have also allowed all vertex permutations and id
tified the number~4.3! with a unique representation of
given diagram. However, for most diagrams containing s
eral vertices, this would drastically inflate the number of a
missible matrices and therefore the effort for finding
unique representation.

Now we can also give an improved procedure for findi
nM . Let nM8 be the number of different matrices compatib
with the vertex ordering by the four tuples introduced abo
Let there bec classes of vertices andk1 ,...,kc vertices be-
longing to each class. Then we have

nM5
p!

) j 51
c kj !

nM8 ~4.4!
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or, together with~4.2!,

N5
1

nM8
S )

j 51

c

kj ! D S )
i 51

p

M0i ! D . ~4.5!

As an example, consider the following diagram of t
four-point function withp53 vertices:

~4.6!

Its vertices are grouped intoc52 classes withk152 vertices
belonging to the first class characterized by the four tu
(E,S,D,T)5(1,0,1,0) andk251 vertex belonging to the
second class (E,S,D,T)5(2,0,0,0). When labeling the ver
tices in view of the unique matrix representation, the ver
in the second class comes last because of the higher nu
of external legs. Exchanging the other two vertices in
first class does not change the adjacency matrix anymore
to the reflection symmetry of the diagram~4.6!. Thus its
unique matrix representation reads

S 0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0

D , ~4.7!

with rows and columns indexed from 0 to 3. According
Eq. ~4.3!, the matrix~4.7! yields the number

10u120u2110. ~4.8!

As there isnm8 51 matrix compatible with the vertex orderin
by the four tuples, the numberN of vertex permutations o
the diagram~4.6! is determined from~4.5! as 4~compare the
corresponding entry in Table III!.

A more complicated example is provided by the followin
diagram of the two-point function withp54 vertices:

~4.9!

Here we have againc52 classes, the first one i
(E,S,D,T)5(0,0,2,0) with k152 vertices and the secon
one (E,S,D,T)5(1,0,1,0) withk252 vertices. Exchanging
both vertices in each class leads now tonM8 52 different
matrices

S 0 0 0 1 1

0 0 2 2 0

0 2 0 0 2

1 2 0 0 1

1 0 2 1 0

D , S 0 0 0 1 1

0 0 2 0 2

0 2 0 2 0

1 0 2 0 1

1 2 0 1 0

D .

~4.10!

For the unique matrix representation we have to choose
last matrix as it leads to the smaller number

00u020u1020u12010. ~4.11!
e

x
ber
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ue
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From Eq. ~4.5! we read off that the numberN of vertex
permutations of the diagram~4.9! is 2 ~compare the corre-
sponding entry in Table II!.

The matrixM contains, of course, all information on th
topological properties of a diagram@9,10#. For this we define
the submatrixM̃ by removing the zeroth row and colum
from M . This allows us to recognize the connectedness o
diagram: A diagram is disconnected if there is a vertex nu
bering for whichM̃ is a block matrix. Furthermore a verte
is a cut vertex, i.e., a vertex which links two otherwise d
connected parts of a diagram, if the matrixM̃ has an almost
block form for an appropriate numbering of vertices in whi
the blocks overlap only on some diagonal elementM̃ ii , i.e.,
the matrixM̃ takes block form if thei th row and column are
removed. Similarly, the matrixM̃ allows us to recognize a
one-particle-reducible diagram, which falls into two piec
by cutting a certain line. Removing a line amounts to red
ing the associated matrix elements in the submatrixM̃ by
one. If the resulting matrixM̃ has block form for a certain
vertex ordering, the diagram is one-particle reducible.

B. Practical generation

We are now prepared for the computer generation
Feynman diagrams. First the vacuum diagrams are gener
from the recursion relation~2.61!. From these the diagram
of the connected two- and four-point functions are obtain
by cutting or removing lines. We used aMATHEMATICA pro-
gram to perform this task. The resulting unique matrix re
resentations of the diagrams up to the orderp54 are listed
in Tables V–VII. They are the same as those derived bef
by hand in Tables I–III. Higher-order results up top56,
containing all diagrams that are relevant for the five-lo
renormalization of f4 theory in d542e dimensions
@10,20#, are made available on the internet@19#, where also
the program can be found.

1. Connected vacuum diagrams

The computer solution of the recursion relation~2.61! ne-
cessitates to keep an exact record of the labeling of exte
legs of intermediate diagrams which arise from differenti
ing a vacuum diagram with respect to a line once or twi
To this end we have to extend our previous matrix repres
tation of diagrams where the external legs are labeled a
they were connected to a simple additional vertex with nu
ber 0. For each matrix representing a diagram we define
associated vector that contains the labels of the external
connected to each vertex. This vector has the length of
dimension of the matrix and will be added to the matrix as
extra left column, separated by a vertical line. Consider,
an example, the diagram~4.6! of the four-point function with
p53 vertices, where the spatial indices 1, 2, 3, 4 are
signed in a particular order:

~4.12!

In our extended matrix notation, such a diagram can be r
resented in total by six matrices:
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S $ % 0 2 1 1

$1,2% 2 0 1 1

$3% 1 1 0 2

$1% 1 1 2 0

D , S $ % 0 1 2 1

$3% 1 0 1 2

$1,2% 2 1 0 1

$4% 1 2 1 0

D , S $ % 0 1 1 2

$3% 1 0 2 1

$4% 1 2 0 1

$1,2% 2 1 1 0

D ,

S $ % 0 2 1 1

$1,2% 2 0 1 1

$4% 1 1 0 2

$3% 1 1 2 0

D , S $ % 0 1 2 1

$4% 1 0 1 2

$1,2% 2 1 0 1

$3% 1 2 1 0

D , S $ % 0 1 1 2

$4% 1 0 2 1

$3% 1 2 0 1

$1,2% 2 1 1 0

D . ~4.13!

When constructing of the vacuum diagrams from the recursion relation~2.61!, starting from the two-loop diagram~2.62!, we
have to represent three different elementary operations in our extended matrix notation:

~i! Taking one or two derivatives of a vacuum diagram with respect to a line. For example, we apply this operation
vacuum diagram 2 in Table I

TABLE V. Unique matrix representation of all connected vacuum diagrams off4 theory up to the order
p54. The number in the first column corresponds to their graphical representation in Table I. The matrix
elementsMi j represent the numbers of lines connecting two verticesi and j, omitting Mi050 for simplicity.
The running numbers of the vertices are listed on top of each column in the first two rows. The further
columns contain the vector~S, D, T, F; N! characterizing the topology of the diagram, the multiplicityM, and
the weightW5M /@(4!)pp! #. The graphs are ordered according to their number of self-connections, then
double connections, then triple connections, then fourfold connections, then the number~4.3!.
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~4.14!

This has the matrix representation

d2

dG12dG34
S $% 0 0 0

$% 0 0 4

$% 0 4 0
D 52

d

dG12
F S $% 0 1 1

$3% 1 0 3

$4% 1 3 0
D 1S $% 0 1 1

$4% 1 0 3

$3% 1 3 0
D G

53F S $% 0 2 2

$1,3% 2 0 2

$2,4% 2 2 0
D 1S $% 0 2 2

$2,3% 2 0 2

$1,4% 2 2 0
D 1S $% 0 2 2

$1,4% 2 0 2

$2,3% 2 2 0
D

1S $% 0 2 2

$2,4% 2 0 2

$1,3% 2 2 0
D G . ~4.15!

TABLE VI. Unique matrix representation of all diagrams of the connected two-point function off4 theory up to the orderp54. The
numbers in the first column correspond to their graphical representation in Table II. The matrix elementsMi j represent the numbers of lines
connecting two verticesi and j. The running numbers of the vertices are listed on top of each column in the first two rows. The fu
columns contain the vector~S, D, T; N! characterizing the topology of the diagram, the multiplicityM, and the weightW5M /@(4!)pp! #. The
graphs are ordered according to their number of self-connections, then double connections, then triple connections, then the num~4.3!.
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The first and fourth matrix as well as the second and third matrix represent the same diagram in~4.14!, as can be seen b
permuting rows and columns of either matrix.

~ii ! Combining two or three diagrams to one. We perform this operation by creating a block matrix of internal line
the submatrices representing the internal lines of the original diagrams. Then the zeroth row or column is added to
the respective original external spatial arguments. Let us illustrate the combination of two diagrams by the example

~4.16!

and the combination of three diagrams by

~4.17!
th
ke
o

re
tri
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i-
We observe that the ordering of the submatrices in
block matrix is arbitrary at this point; we just have to ma
sure to distribute the spatial labels of the external legs c
rectly.

~iii ! Connecting external legs with the same label and c
ating an internal line. This is achieved in our extended ma
notation by eliminating the spatial labels of external legs t
appear twice, and by performing an appropriate entry in
matrix for the additional line. Thus we obtain, for instanc
from ~4.16!

~4.18!

and similarly from~4.17!
e

r-

-
x
t
e
,

~4.19!

As we reobtain at this stage connected vacuum diagr
where there are no more external legs to be labeled, we
omit the extra left column of the matrices.

The selection of a unique matrix representation for
resulting vacuum diagrams obtained at each stage of the
cursion relation proceeds as explained in detail in Sec. IV
By comparing we find out which of the vacuum diagrams a
topologically identical and sum up their individual mult
plicities. Along these lines, the recursion relation~2.61! is
solved by aMATHEMATICA program up to the orderp56.
The results are shown in Table V and in Ref.@19#. To each
order p, the numbersnp

(0) of topologically different con-
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nected vacuum diagrams are

~4.20!

A direct comparison with other, already established co
puter programs likeFEYNARTS @1–3# or QGRAF @4,5# shows
that the automatization of the graphical recursion relat
~2.61! in terms of ourMATHEMATICA code is inefficient. Ac-
cording to our experience, the major part of the CPU ti
needed for the generation of high-loop order diagrams is
voted to the reordering of vertices to obtain the unique m
trix representation of a diagram—a problem faced also
other graph-generating methods. After implementation o
dedicated algorithm for the vertex ordering written for i
stance in Fortran or C, we would therefore expect CPU tim
-

n

e
e-
-
y
a

s

for the time-consuming high-loop diagrams which are co
parable to those of other programs.

2. Two- and four-point functions G12 and G1234
c

from cutting lines

Having found all connected vacuum diagrams, we der
from these the diagrams of the connected two- and four-p
functions by using the relations~2.18! and ~2.25!. In the
matrix representation, cutting a line is essentially identica
removing a line as explained above, except that we n
interpret the labels that represent the external spatial labe
sitting on the end of lines. Since we are not going to dist
guish between trivially ‘‘crossed’’ diagrams that are relat
by exchanging external labels in our computer implemen
tion, we need no longer carry around external spatial lab
Thus we omit the extra left column of the matrix represe
ing a diagram when generating vacuum diagrams. As an
ample, consider cutting a line in diagram 3
Table I
x algebra
wo

respect
can be
d in the
king
~4.21!

which has the matrix representation

2
d

dG21 S 0 0 0

0 1 2

0 2 1
D 52S 0 1 1

1 1 1

1 1 1
D 1S 0 2 0

2 0 2

0 2 1
D 1S 0 0 2

0 1 2

2 2 0
D . ~4.22!

Here the plus signs and multiplication by 2 have a set theoretical meaning and are not to be understood as matri
operations. The last two matrices represent, incidentally, the same diagram in~4.21! as can be seen by exchanging the last t
rows and columns of either matrix.

To create the connected four-point function, we also have to consider second derivatives of vacuum diagrams with
to G21. If an external line is cut, an additional external line will be created, which is not connected to any vertex. It
interpreted as a self-connection of the zeroth vertex, which collects the external lines. This may be accommodate
matrix notation by letting the matrix elementM00 count the number of lines not connected to any vertex. For example, ta
the derivative of the first diagram in Eq.~4.21! gives

~4.23!
n be

ause
, the
d by

we
all
eful

e
de-
with the matrix notation

2
d

dG21 S 0 1 1

1 1 1

1 1 1
D 5S 0 3 1

3 0 1

1 1 1
D 1S 0 1 3

1 1 1

3 1 0
D

1S 0 2 2

2 1 0

2 0 1
D 12S 1 1 1

1 1 1

1 1 1
D .

~4.24!
The first two matrices represent the same diagram as ca
seen from Eq.~4.23!. The last two matrices in Eq.~4.24!
correspond to disconnected diagrams: the first one bec
of the absence of a connection between the two vertices
second one because of the disconnected line represente
the entry M0051. In the full expression for the two-loop
contributionG1234

c,(2) to the four-point function in Eq.~2.25! all
disconnected diagrams arising from cutting a line inG12

(2) are
canceled by diagrams resulting from the sum. Therefore
may omit the sum, take only the first term and discard
disconnected diagrams it creates. This is particularly us
for treating low orders by hand. If we include the sum, w
use the prescription of combining diagrams into one as
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TABLE VII. Unique matrix representation of all diagrams of the connected four-point function off4 theory up to the orderp54. The
numbers in the first column correspond to their graphical representation in Table III. The matrix elementsMi j represent the numbers of line
connecting two verticesi and j. The running numbers of the vertices are listed on top of each column in the first two rows. The f
columns contain the vector~S, D, T; N! characterizing the topology of the diagram, the multiplicityM, and the weightW5M /@(4!)pp! #. The
graphs are ordered according to their number of self-connections, then double connections, then triple connections, then the num~4.3!.
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scribed above in Sec. IV B, except that we now omit t
extra vector with the labels of spatial arguments.

3. Two- and four-point functions G12 and G1234
c

from removing lines

Instead of cutting lines of connected vacuum diagra
once or twice, the perturbative coefficients ofG12 andG1234

c

can also be obtained graphically by removing lines. Inde
from ~2.16!, ~2.44!, ~2.54!, and ~2.56! we get for the two-
point function

G125G1212E
34

G13G24

dW~ int!

dG34
, ~4.25!

so that we have forp.0

G12
~p!52E

34
G13G24

dW~p!

dG34
~4.26!

at our disposal to compute the coefficientsG12
(p) from remov-

ing one line in the connected vacuum diagramsW(p) in all
possible ways. The corresponding matrix operations
identical to the ones for cutting a line so that in this resp
there is no difference between both procedures to ob
G12.

Combining~4.25! with ~2.12!, ~2.23!, and ~2.56!, we get
for the connected four-point function

G1234
c 54E

5678
G15G26G37G48

d2W~ int!

dG56dG78

24E
5678

G15G27~G36G481G46G38!
dW~ int!

dG56

dW~ int!

dG78
,

~4.27!

which is equivalent to

G1234
c,~p!54E

5678
G15G26G37G48

d2W~p!

dG56dG78

24(
q51

p21 S p
qD E

5678
G15G27~G36G481G46G38!

3
dW~q!

dG56

dW~p2q!

dG78
. ~4.28!

Again, the sum serves only to subtract disconnected
grams that are created by the first term, so we may choos
omit the second term and to discard the disconnected
grams in the first term.

Now the problem of generating diagrams is reduced to
generation of vacuum diagrams and subsequently ta
functional derivatives with respect toG12. An advantage of
this approach is that external lines do not appear at inter
diate steps. So when one uses the cancellation of dis
nected terms as a cross check, there are less operations
performed than with cutting. At the end one just interpr
external labels as sitting on external lines. Since all neces
operations on matrices have already been introduced,
s

d,

re
t
in

a-
to
a-

e
g

e-
n-
be

s
ry
e

omit examples here and just note that we can again o
external labels if we are not distinguishing between trivia
‘‘crossed’’ diagrams.

The generation of diagrams of the connected two- a
four-point functions has been implemented in both poss
ways. Cutting or removing one or two lines in the connec
vacuum diagrams up to the orderp56 leads to the following
numbersnp

(2) andnp
(4) of topologically different diagrams o

G12
(p) andG1234

c,(p) :

~4.29!

V. OUTLOOK

Using the example off4 andf2A theory, we have devel-
oped in this work a new method to generate all topologica
different Feynman diagrams together with their proper m
tiplicities without any combinatorial considerations. Solvin
a graphical recursion relation leads to the connected vac
diagrams and a subsequent cutting of their lines results in
connected diagrams. Although our automatization in ter
of a MATHEMATICA code@19# turned out to be inefficient in
comparison with other, already established programs
FEYNARTS @1–3# or QGRAF @4,5#, the construction method a
such is conceptually attractive as it immediately follow
from the functional integral approach to field theory. As d
tailed in Sec. IV B, we expect that a sophisticated implem
tation of our program will be as efficient as existing code

In separate publications our method is applied to gene
the Feynman diagrams of quantum electrodynamics@21# and
one-particle irreducible diagrams in the ordered phase off4

theory, where the energy functional contains a mixture
cubic and quartic interactions@22,23#. The work @22# also
suggests the capability of our new method beyond a m
generation of graphs. For example, a formal proof of the f
that W generates connected graphs and that the effective
ergyG generates one-particle irreducible graphs could be
tablished. Also, a simple all-orders resummation of pertur
tion theory is presented there. We believe that our met
has great potential in formalizing physically interesting r
summations without concern over combinatorics of grap
explicitly, a frequent source of errors in the history of resu
mations.

It is hoped that our method will eventually be combin
with efficient numerical algorithms for actually evaluatin
Feynman diagrams, e.g., for a more accurate determina
of universal quantities in critical phenomena.
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